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Laboratory observations of wave group
evolution, including breaking effects
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(Received 17 October 1997 and in revised form 11 August 1998)

The nonlinear evolution of deep-water wave groups, which are initiated by unstable
three-wave systems, have been observed in a large wave tank (50 m long, 4.2 m
wide, 2.1 m deep), equipped with a programmable, high-resolution wave generator. A
large number of experiments were conducted (over 80 cases) for waves 1.0–4.0 m long,
initial steepness ε = 0.10–0.28, and normalized sideband frequency differences, δω/εω,
0.2–1.4. Using an array of eight high-resolution wave wires distributed in range (up to
43 m fetch), spectral evolution was studied in detail including the effect of background
disturbances on the evolution. Minimizing those, new observations were made which
extend the pioneering work of Lake et al. (1977) and of Melville (1982). Foremost, near
recurrence without downshifting was observed without breaking, despite a significant
but reversible energy transfer to the lower sideband at peak modulation; complete
recurrence was prevented by the spreading of discretized energy to higher frequencies.
Strong breaking was found to increase the transfer of energy from the higher to the
lower sideband and to render that transfer irreversible. The end state of the evolution
following strong breaking is an effective downshifting of the spectral energy, where the
lower and the carrier wave amplitudes nearly coincide; the further evolution of this
almost two-wave system was not studied here. Breaking during strong modulation
was observed not only for the fastest growing initial condition, but over a wide
parameter range. An explanation of the sideband behaviour in both the breaking and
non-breaking case was given based on wave energy and momentum considerations,
including the separate effects of energy and momentum loss due to breaking, and
transfer to discretized higher frequencies throughout the spectra. Attention was drawn
to the latter, which was almost universally observed.

1. Introduction
Since Benjamin & Feir (1967) showed theoretically and experimentally that the

Stokes’ wave was unstable to modulational perturbations, a number of other exper-
imental investigations have been conducted on the long-time evolution of nonlinear
wave trains, see table 1. Certain findings have greatly contributed to advancing the
nonlinear science of deep-water gravity waves. The range of parameters and condi-
tions in the past experiments were however limited. Note that most of the experiments
were conducted for a range of steepness, but with a single fixed or naturally deter-
mined modulational frequency. Short waves (<1.0 m) were also typically used, since
the sideband evolution is a slow process with time scale inversely proportional to
the square of the steepness, and tank lengths were limited. The shortcoming of using
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Experiment Tank λ ε δω/ω0

BF∗ 42 m 2.16 m 0.17 0.15
0.25 m 0.07–0.15 0.1

LYRF∗ 0.9×0.9×12 m 12–70 cm 0.1–0.35 0.1, 0.2
RM 3×1×40 m 1.0 m NA ∼0.25
S∗ 100×0.8×340 m 0.6–1.3 m 0.09–0.34 O(ε)

3.66×3.66×137 m
M∗ 0.5×0.6×28(16) m 0.4 m 0.2–0.3 O(ε)
BR 2.6×1.0×100 m 0.8 m ∼0.24 NA
BHL 1.0×0.75×20 m 0.4 m 0.1–0.2 O(ε)
OEL 4.2×2.1×50 m 1.0–4.0 m 0.10–0.28 0.2ε∼1.4ε

Table 1. A list of modulational instability experiments performed in the past; bold face letters
indicate that the modulation was imposed on the wave-generator motion. BF: Benjamin & Feir
(1967), LYRF: Lake et al. (1977), RM: Ramamonjiarisoa & Mollo-Christensen (1979), S: Su, Bergin,
Marler & Myrick (1982) and Su (1982), M: Melville (1982), BR: Bonmarin & Ramamonjiarisoa
(1985), BHL: Bliven, Huang & Long (1986), OEL: this study

short waves is that the effect of surface tension is no longer negligible in regions
near the highly deformed wave crest for waves below about 1 m in length. For
waves shorter than 60–70 cm, non-splashing ‘micro-breakers’ appear, see figure 10 of
Melville (1982), rather than energetic splashing jets as in the case of waves over 1 m in
length, see figures 10 and 12; differences in evolution due to these different breaking
regimes have never been quantified. In addition, the width of the tanks used in the
past was limited and can significantly affect evolution due to small but significant
sidewall damping; this was already noted by Benjamin (1967).

Except in a few cases, most experiments were conducted without perturbing an
otherwise monochromatic wave-generator motion. The modulation therefore natu-
rally evolved from background noise and the modulational frequencies were thus
naturally determined. We call these ‘un-seeded’ experiments. On the other hand, if the
modulation is imposed at the wave generator, it is possible to change not only the
sideband frequencies at will, but also the initial sideband amplitudes and the strength
of the modulation. We call this a ‘seeded’ experiment. The differences arising between
‘seeded’ and ‘un-seeded’ experiments will be discussed briefly in §3.2.

Among the past works listed in table 1, those of Benjamin & Feir (1967), Lake et
al. (1977), Su & Green (1985), and Melville (1982), denoted by an asterisk in table
1, have a direct connection with the work presented in this report. In particular,
the work of Lake et al. and Melville is particularly relevant, and they have, indeed,
inspired the present investigation.

In a remarkable, ground breaking paper, Lake et al. (1977) have studied exper-
imentally and numerically the long-time evolution of nonlinear wave trains, and
discovered that evolution occurs in recurrent fashion, where the modulation period-
ically increases and decreases, the wave form returning periodically to its previous
form. Although a complete recurrence was theoretically demonstrated in their paper
through a numerical solution of the nonlinear Schrödinger (NLS) equation, their
experimental results were ambiguous and somewhat contradictory.

In their experimental example at small steepness (ε ∼ 0.1), the wave envelope
modulated and the spectral bandwidth broadened at peak modulation, displaying a
number of high-frequency peaks. Past peak modulation, the wave envelope demod-
ulated and the spectral bandwidth reduced as the high-frequency spectral content
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diminished. Thus, the original near three-wave system was almost recovered, but with
an important exception: the spectral peak downshifted to a lower sideband, despite
the absence of breaking.

In their other example at a higher steepness (ε = 0.2) breaking occurred at the peak
modulation. When the wave train demodulated, the number of waves per group as well
as the group period itself did not change, indicating that significant energy was not
shifted to the lower sideband. These two experiments clearly contradicted each other
as to whether breaking or downshifting does or does not occur during evolution. These
experiments are also ambiguous as to whether recurrence (no downshifting) is a conse-
quence of evolution in a conservative system, as predicted by their NLS computations.

Following Lake et al.’s work, Melville (1982) conducted a series of sideband evo-
lution experiments, all containing breaking events, unquestionably to answer some
of the troubling and important questions left over. Melville’s conclusion was that
‘the evolution of the spectrum is not restricted to a few discrete frequencies but also
involves a growing continuous spectrum, and the description of the evolution as a re-
currence phenomenon is incomplete’. He suggests that the end state of the evolution is
inevitably a breaking event, followed by partial recurrence tending to lower frequency.
Melville did not observe any recurrence of Fermi–Pasta–Ulam type, but the initial
wave steepness he used was over ε = 0.2, much higher than those used by Lake et al.

Unfortunately, these two pioneering studies have not been followed by further
systematic measurements and analyses to pursue the various questions they raise. For
example: no one has demonstrated even near-recurrence in the absence of breaking as
predicted by Lake et al.; the mechanisms underlying lower sideband behaviour have
not been elucidated, and particularly the relative roles of conservative versus breaking
processes; Melville’s ‘growing continuous spectrum’ has not been confirmed or further
studied; measurements of evolution during breaking and of the limits of breaking
have not been made. Therefore, in order to understand the behaviour of evolving
wave groups with less ambiguity and to cover a much wider parameter space, we have
conducted a ‘seeded’ experiment for waves with lengths in the range of 1–4 m, initial
steepness ε = 0.1–0.28, and ‘seeded’ modulational frequencies δω/ω = (0.1–1.5)ε. The
initial sideband amplitudes b±/a were also varied. Special care was taken in order to
minimize the effect of background disturbances in the tank. It is, to our knowledge,
the first systematic experiment on the evolving wave train using long waves in a large
wave tank, and it indicated the advantage of ‘seeded’ over ‘un-seeded’ experiments.
The results directly relate to important questions following the previous pioneering
work of Lake et al. and Melville.

In §2, some of the theoretical background of the subject is summarized with infor-
mation helpful in designing an instability experiment. Section 3 describes the facility
and the experimental procedure in detail including effects of tank background dis-
turbances on wave train evolution. In §4, experimental results are presented from the
sideband wave evolution experiments including breaking and non-breaking evolution;
§5 contains a discussion of the results including a theoretical development which pro-
vides an explanation for the effect of breaking on downshifting as well as the role of
energy transferred to higher frequencies. Section 6 contains brief concluding remarks.

2. Theoretical background
The focus here is on a simple summary of theoretical results. Readers who are

interested in a more detailed review on the subject should refer to comprehensive
review articles by Yuen & Lake (1980) and by Hammack & Henderson (1993).
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Benjamin & Feir (1967) performed a perturbation analysis of the uniform wave
train based on the Euler equations and showed that a wave train with initial amplitude
a0, wavenumber k0, and frequency ω0 is unstable to perturbations with frequency δω,
when the following condition is satisfied:

0 < δ̂ 6
√

2, (2.1)

where δ̂ ≡ δω/εω0 and ε ≡ a0k0. The modulational instability is an interaction among
three monochromatic wave trains: carrier (ω0), upper (ω+), and lower (ω−) sideband
waves, that satisfy the following conditions:

2ω0 = ω+ + ω−,
ω± = ω0 ± δω,
2k0 = k+ + k− + ∆k,

 (2.2)

where ∆k is a slight mismatch of the wavenumber from Phillips’ four wave resonance
conditions for infinitesimal waves. Due to the cancellation of this resonant de-tuning
in the presence of amplitude dispersion, sideband waves grow exponentially (Phillips
1967), and the growth rate d(ln a)/d(kx) as predicted by Benjamin & Feir (1967) is

β = ε2 δ̂(2− δ̂2)1/2. (2.3)

Maximum growth is produced for δ̂ = 1.0 and for the initial phases of the sidebands
φ± = − 1

4
π.

Lake et al. (1977) have conducted a controlled experiment in a laboratory tank, and
compared the various characteristics of the evolution of the nonlinear wave train with
the numerical solution of the nonlinear Schrödinger equation (Zakharov 1968; Chu &
Mei 1970). Although the initial growth rate as obtained through the numerical solution
of the NLS equation agreed with the theoretical prediction by Benjamin & Feir
(1967), the experimentally determined growth rate required an artificial correction to
the empirically determined steepness for agreement with Benjamin & Feir’s theoretical
predictions (Lake & Yuen 1977). The correction was fictitious (Yuen & Lake 1982),
and a later study indicated that the theories, rather than the experimental result
itself, had to be improved. Dysthe (1979) has undertaken this task, and derived a
correction term for the NLS equation, extending it to broader bandwidths; it has been
claimed that the higher-order-term correction introduced here is strictly due to the
broader bandwidth assumption and not due to the correction in amplitude, Stiassnie
(1984). Dysthe’s equation was solved numerically (Lo & Mei 1985) for the long-
term evolution of nonlinear wave trains, and showed an asymmetric growth of the
sidebands, the lower growing at the expense of the upper. The numerical method first
introduced by Lo & Mei (1985) and later improved by Trulsen (1989) has proved to
be very efficient and easy for numerically implementing Dysthe’s equation. However,
the steepness range of validity is still limited (ε < 0.10) as seen in the comparison
of the predicted fastest growing modulational frequencies with the exact result of
Longuet-Higgins (1980) (see figure 16). Yuen & Lake (1982) have suggested the use
of the so-called Zakharov integral equation Zakharov (1968). They have successfully
solved the equation and derived the growth rates for a one-dimensional modulation
showing a better agreement with experimental results for moderate steepness (ε = 0.10
and higher) than given originally by Benjamin & Feir (1967).

There are some limitations in previous Zakharov-based calculations and therefore
we have undertaken improvements based on Krasitskii’s reduced four-wave interaction
equation Krasitskii (1994), which is a very useful modification of the Zakharov integral



Observations of wave group evolution 201

1.0

0.8

0.6

0.4

0.2

0.05

0.10

0.15

0.20

0.25

0.30

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
dx/εx

βx

ε2

0

Figure 1. Initial growth rate, βx, of the sideband disturbance, based on Krasitskii’s reduced
four-wave interaction equation (Krasitskii 1994). The curves are for steepness ε = 0.05, 0.10, 0.15,
0.20, 0.25 and 0.30, plotted against normalized modulational frequency δω/εω.

equation. Figure 1 displays the growth rate computed by us, based on Krasitskii

(1994). It leads easily to the determination of the δ̂-range giving the largest growth
rate for given ε. Such a diagram is very useful when planning experiments such
as are reported here, where the full evolution is to be studied, well beyond the
range of instability theory. Oshri (1996) has numerically implemented these same
Krasitskii’s Hamiltonian equations and studied the evolution of the unstable Stokes’
wave including non-conservative effects due to wind input and dissipation.

Fully nonlinear computations have also been applied to the study of the long
time evolution of unstable Stokes’ waves: Dold & Peregrine (1986); Dommermuth
& Yue (1987); Tulin et al. (1994); Landrini et al. (1998). The problem is solved for
a periodic spatial domain except in Tulin et al. (1994), which is a numerical wave
tank, called longtank, wherein the exact inviscid flow in the wave tank including
exact wavemaker shape and motion is simulated in time. Direct comparisons of wave
elevation time series between longtank and experimental observations are possible
up to the point of wave breaking, beyond which the computation must stop. Such
a comparison is shown in figure 2. Time series obtained from a wave wire range
along the length of the Ocean Engineering Laboratory (OEL) tank is compared with
longtank simulations; the waves were generated by the wavemaker starting at rest.
The dotted line (measurements) overlaps the longtank simulation (solid line) to such
an extent that it is difficult to separate the two curves up to breaking, beyond which
the simulations cease. The prediction of breaking was also observed to be close.

In a separate work, Landrini et al. (1998), we have carried out an extensive study
comparing a variety of weakly nonlinear models (Krasitskii, Dysthe and NLS) with
high-resolution fully nonlinear computations. Using the fully nonlinear computations
as a baseline this study compared the success of the other models in predicting
evolution through several cycles of recurrence and found their rank order of success
to be Krasitskii, Dysthe, NLS; the success of Krasitskii depended upon using a
sufficient number of wave modes. All of these simulations, except NLS, confirm the
major features of the near recurrence experiment reported here: an increase of energy
in the lower sideband relative to the upper as the peak modulation is approached
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Figure 2. Comparison of the fully nonlinear model (longtank) and the experimental observation.
Solid line: longtank, dotted line: experiment. (b) The time series of the surface elevation at fetches
5.18, 10.58, 15.98, 21.38, 26.78 and 32.18 m, and the time series of the plunger motion. (a) The
spatial surface elevation snapshot from longtank, showing the wave breaking at a fetch of 32.18 m.

followed by the disappearance of that difference in energies as recurrence progresses.
The fully nonlinear simulation showed breaking, when it occurs, close to the peak in
the modulation.

In figure 2, the time traces from the wires closest to the wavemaker (b) show a
regular modulation corresponding to the weak sidebands which have grown to that
location. At subsequent locations the modulations grow in amplitude due to sideband
growth and finally (a) the groups become asymmetric about the crests, the group
front steepening due to unequal sideband growth, culminating in breaking. In figure 3
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Figure 3. Spatial surface elevation snapshots at different times obtained from longtank
simulation showing tendency toward recurrence.

is another longtank simulation without breaking showing the tendency to recurrence
(compare with figure 9(c)) and figure 4 from a breaking case, the details of breaking
showing the concave front face and jet development, just as observed and pictured
in figure 12. Unfortunately, the longtank simulations, being inviscid, cannot include
effects of real dissipation following jet splash, which must be studied through tests
like these.

A discussion of downshifting which is relevant for understanding the experimental
results reported here was presented by Tulin (1996). Through global considerations
of both wave energy and momentum conservation in a multi-modal wave system
evolving from a carrier wave and two sidebands, he showed the specific role which
both momentum losses and energy dissipation play in determining the shifting of
energy between sidebands. In particular he showed that it is not dissipation alone
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Figure 4. longtank simulation of the breaking event, showing the plunging jet development.

which determines downshifting, but the balance between momentum and dissipation
losses, suitably parameterized. His brief demonstration is extended in §5.3 of this
paper to include the role of nonlinear energy transfer between modes, especially to
higher frequencies. The latter transfers provide the basic mechanism for downshifting
in the absence of breaking dissipation, but they are substantially reversible, therefore
accounting for the observed reversal of downshifting past the modulation peak. The
original discussion of Tulin (1996) includes a parameterization of both the energy
and momentum loss in the jet accompanying breaking.

3. Facility and experiments
3.1. Facility

The tank is 50 m length, 4.2 m wide, 2.1 m deep with a 30 m wind tunnel section of
1.5 m air passage height. In an upwind view of the tank, figure 5, several steep waves
breaking energetically at the peak of wave groups can be seen. The wave generator,
designed and constructed within the OEL, is a plunging type driven by two parallel
hydraulic pistons. The dimension of the plunger is about 4.2 m wide, 2 m long,
and 1 m deep. The plunger has a detachable front face section made of Styrofoam,
optimized for generating planar waves in the range of 60 cm to 10 m lengths. The
plunger shape was designed as part of a systematic study of wave making in a narrow
tank by Yao (1992).

Figure 5. Ocean Engineering Laboratory (UCSB) wind-wave tank. Facility. Wavemaker: com-
puter-driven bi-modal plunger with interchangable front faces; λ ∼ 0.6–10 m and maximum wave
height of 0.64 m (frequency dependent). Wind tunnel: maximum flow rate of 13 m s−1 (off- and
onshore capabilities). Tow Carriages: surface and sub-surface carriages capable of maximum speeds
of 5 m s−1 and 1 m s−1 respectively. Instrumentation. FMCW Radar: 4–8 GHz, dual polarization,
pulse repetition rate 500 Hz. High-speed video camera: CCD array of 256× 256 pixels; maximum
frame rate 1000 Hz. Wave profile measurement: capacitance-type wave wires with 1 kHz sample
frequency and resolution of 0.5 mm per m wire length. Flow measurement: 3-axis acoustic Doppler
velocimeter. Wind measurement: 2-channel hot-film anemometer and pitot tubes. Light box: for
surface visualization and quantitative measurement of wave slopes over 1 m square.
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The motion of the plunger is controlled by a programmable controller made by
MTS inc. The controller takes an external input signal for the motion generated by
a 486PC. The signal is generated by the National Instrument LabVIEW transmitted
through a digital communication interface. The 15 bit signal at 200 Hz can be either
generated in real time or read from a data file stored on the hard disk. The frequency
response of the plunger was measured by a position feedback at the wave generator.
As a result, a frequency-dependent transfer function of counts (0–215) to the actual
stroke of the plunger was obtained. The stroke was then compared with the actual
wave amplitude measured at the wave tank with the wave wire. The stroke and the
wave amplitude ratios are nearly constant for waves longer than 1.5 m.

3.2. Source of background disturbances in the tank

Background noise anywhere in the system can seed a selective amplification of
some wave components in resonant interaction experiments (Hammack & Henderson
1993). In order to conduct a controlled resonant interaction experiment, it is therefore
necessary to minimize important sources of disturbance.

Wave reflection from the beach does not have an immediate influence on amplifi-
cation and phase shifting of the incoming wave in the region of measurements, since
the energy reflection coefficients (energy of the reflected wave/energy of the incoming
wave) of our waves (1.0–4.0 m) were measured to be only about 0.1 %. However,
long duration experiments showed that the most significant source of background
noise is associated with the wave front of the propagating wave train and its mul-
tiple reflections from the beach; the multiple reflections of this wave front between
the beach and the wave-generator after a long time create initial sidebands through
selective amplification by the wave system; this was first observed by Melville (1982).
Cross-tank wave modes also cause important disturbances since they introduce an
ambiguity in wave measurement due to cross-tank bias; it is noticeable that breaking
waves become more three-dimensional due to a small standing wave mode across the
tank. The effect of wall dissipation may not be neglected if the sideband growth rate
is small. These noise sources have all been described in detail in Waseda (1997).

3.2.1. Multiple reflections of the wave front, and effects of seeding

Figure 6 shows the long time evolution of the envelope of initially monochromatic
1 m waves where the sideband disturbances were not imposed on the wave-generator
motion (‘un-seeded’). The diagonal line indicates the travel path of the wave front of
the wave train propagating at the group speed. Observe that only after several round-
trips of the wave front does the wave envelope start to modulate and that modulation
is clearly associated with the travel path of the wave front, see figure 6. This strongly
suggests that the source of modulational disturbances lies in a disturbance travelling
with the front of the wave train at the group speed. The resulting modulational
frequency roughly corresponds to the peak region of the growth curves predicted by
instability theories (figure 1), but not necessarily the fastest growing one. The initial
sideband amplitudes b±/a0, are unpredictable and probably strongly depend on the
characteristics of the tank.

Figure 7 compares the spectral evolution of an ‘un-seeded’ and ‘seeded’ run. In the
‘un-seeded’ case, (a), the sideband modes grew with fetch, but the spectral peaks are
broad. At earlier fetches, we may even find multiple peaks around the sideband modes.
Our interpretation of this broadening is that the frequencies of the naturally grown
sideband disturbances change in a certain range with time, perhaps stochastically
under the influence of noise in the water, and that therefore the spectral peak
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Figure 7. Spectral evolution of modulated wave train. (a) No modulation imposed on the
wave-generator motion. λ = 1.0 m (1.23 Hz), ε = 0.162. Naturally appearing sideband frequencies
are around 1.39 Hz and 1.07 Hz. (b) Modulation imposed on the wave-generator motion. λ = 1.0 m
(1.23 Hz), ε = 0.162. Sideband frequencies: 1.43 Hz and 1.03 Hz, a±/a0 = 0.02. Fetches; 3.6 m,
9.0 m, 14.4 m, 19.8 m, 25.2 m, 30.6 m, 36 m, and 41.4 m from bottom to top. Four degrees of
freedom.

of the ensemble-averaged spectrum broadens. The naturally evolving modulational

frequency in the case of figure 7 corresponds to δ̂ = 0.8, which is close to but slightly

smaller than the fastest growing condition at ε = 0.163, δ̂ ∼ 0.86, see figure 1. The
selection mechanism for the modulational frequency of the ‘un-seeded’ experiment
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Figure 8. Schematics describing the cross-tank wave mode in a narrow wave tank.

probably contains both stochastic and deterministic features depending among other
things on the tank geometry. This introduces an ambiguity in the experiment. Since
the development of the sideband in the ‘un-seeded’ case takes time, in order to
study the evolution of the modulational wave train it is necessary to wait for as
long as 20 min (Melville 1982) until the starting transients disappear. Therefore, the
subsequent experiments are carried out in a relatively noisy environment.

On the other hand, the modulational characteristic of the ‘seeded’ case, (b), is seen
to be stable; the sideband frequency is locked to the modulational frequency imposed
at the wave generator. Such comparisons suggest that imposing the modulation on the
wave-generator motion is advantageous for studying wave group evolution in itself,
since it reduces experimental ambiguity by allowing experiments to be conducted prior
to the growth of noise from the continual passage of the wave front, i.e. within the
first 5 min of operation. This technique therefore allows full control of the parameter
values δω and b±/a, less noise, and therefore better conditions for comparison with
theory. Of course, the natural selection process and noise effects are of interest in
their own right. We have used both processes in systematic studies of wind effects on
initial instability growth, which will be reported elsewhere.

3.2.2. Three-dimensionality in the tank

Although the reflected wave energy from the beach is small, it is a source of cross-
tank wave disturbances since the reflected disturbance can be three-dimensional.

Due to well known waveguide effects (Yao, Tulin & Kolaini 1994), waves shorter
than twice the tank width can propagate down-tank at an angle θ only if they satisfy
the following relation:

k cos(θ) =

{
kB n symmetric mode
kB n/2 asymmetric mode,

(3.1)

where k ≡ 2π/λ, kB ≡ 2π/B (B is the breadth of the tank), and n is an integer (figure
8). Suppose a propagating wave mode a cos(kx − ωt) and cross-tank wave modes
s cos(k sin θ x± k cos θ y − ωt) co-exist, the wave pattern in the tank will be

η = a cos(kx− ωt) + 2s cos(k sin θ x− ωt) cos(k cos θ y). (3.2)

For a given fetch x, the second term of (3.2) represents a standing wave pattern across
the tank. This cross-tank mode vanishes when λ > 2B, according to (3.1).

Two wires were placed across the tank (fetch 27 m, at the centre and 1.4 m
off the centre) in order to observe the development of the standing wave pattern.
Starting from a uniform initial amplitude across the tank that occurs just after the
wave generator was initiated (0.825 Hz monochromatic wave, 2.3 m), it took more
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than 5 min until the cross-tank standing wave pattern developed and reached an
equilibrium state. This time corresponds to about three to four round-trips of the
waves within the tank. This suggests that in order to minimize the influence of cross-
tank wave modes in the measurement, the wave-generator motion should terminate
before the wave front makes 3–4 round-trips. Measurements were typically taken
from the beginning of the wave generator initiation until after the termination of the
wave generator, but the analyses were restricted to the segment of data containing
the early part of the wave train where the influence of such disturbances are minimal.

3.2.3. Energy dissipation at the sidewall

The dissipation rate d(ln a)/d(kx) of the progressing deep water wave due to the
dissipation at the wall boundary layer is found using Ursell’s (1952) linearized theory
with the result (Lo & Mei 1985)

βD =
(2ν/ω0)

1/2

B
, (3.3)

which is not a function of the wave steepness ε.
For ν = 10−6 m2 s−1, and B = 4.2 m, the rate of dissipation βD is 1.34×10−4×f−0.5,

where f is the frequency of the wave. The dissipation at the sidewall is negligible if
the following condition is satisfied:

δ̂(2− δ̂2)1/2ε2 � 1.34× 10−4 f−0.5; (3.4)

(3.4) was satisfied for all the experiments conducted here, but not in all previous
experiments, listed in table 1.

3.3. Wave-generator signal

In a ‘seeded’ experiment, the derived wave train at its initial stage is

η = ac sin(ω0 t) + b+ sin(ω+ t+ φ+) + b− sin(ω− t+ φ−), (3.5)

where ω0, ω+, and ω− satisfy (2.2), and ac, b+, and b− satisfy the following relation:

a2
0 = a2

c + b2
+ + b2

−. (3.6)

Here, a0 is the amplitude of the equivalent unmodulated wave train with initial
steepness ε ≡ a0k. The initial phases φ+ and φ− were set to − 1

4
π, which is the

maximum growth condition (φ+ + φ− = − 1
2
π) predicted by Benjamin & Feir (1967).

Furthermore, b+ and b− were set equal. Therefore, the choices of parameters in (3.5)
are a0, b+, and δω or

ε, b+/a0, and δ̂, (3.7)

for a given wavelength.
In order to avoid the development of noise in the tank, the wave-generator motion

was started and terminated with a finite ramp of duration τ. The actual wave-generator
control signal used is

Y (t) = e(t)
s

2

[
ac

a0

cos(ωct) +
b+

a0

cos(ω+t+ φ+) +
b−
a0

cos(ω−t+ φ−)

]
, (3.8)

where

e(t) =


1
2

(
1− cos(πt/τ)

)
, 0 6 t 6 τ,

1, τ < t < T − τ
1
2

(
1− cos(π(t− T )/τ)

)
, T − τ 6 t 6 T ,

(3.9)
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where T is the total length of the data, and s is the stroke in arbitrary units. Note
that if τ is too short, the starting wave front breaks before reaching the beach, which
creates local disturbances and may not be desirable for certain experiments. We have
avoided this effect.

4. Evolution results
4.1. Evolution of recurrent type

The experiment here is designed to repeat the conditions of the evolution experiment
on a weak wave (ε ∼ 0.1) reported in Lake et al. (1977), but on a larger scale; the
wavelength here is 1.0 m compared with 40 cm in Lake et al. The spatial development
of the wave train, and the spectra are shown in figure 9. The wave lies outside the
breaking regimes, as we discuss later. The maximum modulation is reached midway
down the tank (25 m fetch). Discretized energy appears there over most of the visible
spectrum at frequencies higher than the higher sideband, with frequency intervals of
the order of δω. The asymmetric growth of (b− − b+) is evident as well as the later
tendency towards reversal. Ultimately a spectrum is recovered at a fetch of 41.4 m
in which the greatest portion of the original energy still resides in the original three
waves, with the carrier wave dominant. The recurrence here is, in fact, much closer
to the NLS or three-wave prediction than found in Lake et al. at this steepness, since
here there is neither a reduction in the number of waves per group nor downshifting
of the spectral energy. Only at the peak modulation, at fetches 19.8 m and 25.2 m
in figure 9(c), does the number of waves per group appear to have been temporarily
reduced from 11 to 10; we return to this observation in §5.6.

Despite a tendency toward reversal during demodulation, at the end of the modu-
lation cycle (41.4 m fetch) there is noticeable discretized high-frequency energy spread
in the spectrum, broadening it, figure 9(b), particularly just below the higher side-
band; the energy levels in these discretized spectra are very low, see figure 9(a). The
failure of this discretized energy to be transferred back to the original three waves
has prevented perfect recurrence. At the same time, there does not appear to be a
tendency for the generation of a continuous spectrum, as suggested in Melville (1982).

It should be noted that the interpretation of the high-frequency portion of the
spectrum, as in figure 9(a,b), must take into account the presence of a multiplicity
of bound waves accompanying the free wave spectrum. These bound waves consist
not only of the well known Stokes’ harmonics for each free wave, but of sum (and
difference) frequencies which arise from second-order interactions corresponding to
each pair of free waves. It is all these bound waves which are probably responsible for
the bulk of discretized spectral energy for frequencies beyond about midway between
carrier and second harmonic frequencies; any additional energy there due to free
waves created by nonlinear transfer cannot easily be identified.

Finally, in interpretation of the somewhat contradictory Lake et al. results, and
especially the appearance of downshifting in the absence of breaking, it is worth
noting that the estimated wave decay rate in their tank, due both to internal and wall
dissipation, is 8% of the sideband growth rate (estimated), and could have influenced
the dynamics of the modal interactions.

4.2. Evolution with breaking and downshifting

Two separate series of experiments have been conducted, involving over 80 runs,
all seeded; breaking was of the plunging jet type. In the first series, utilizing 1.2 m
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Figure 9. (a) Linear–linear plot of the spectral evolution with fetch in case of recurrence. λ = 1.0 m
(1.23 Hz), side band frequencies are 1.12 Hz and 1.34 Hz, initial carrier wave steepness is ε = 0.1,

δ̂ = 0.894, and the sideband steepnesses are b±/ac = 0.3535. Fetches are 3.6, 9.0, 14.4, 19.8, 25.2,
30.6, 36, and 41.4 m from bottom to top. Frequency resolution of the spectrum is 0.0122 Hz. (b)
Same as (a) but in log-linear scale showing the generation of high-frequency spectral peaks. (c)
Surface elevation time series showing the evolution of the modulational wave train experiencing a
recurrence phenomenon. The time coordinate was shifted in order to follow the same wave group.
The numbers 10 and 11 indicates the approximate number of waves per group.
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ε b±/a0 δ̂

0.12 0.5 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.13 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2
0.165 0.1 0.5 0.55 0.60 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.05 1.1
0.165 0.3 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.165 0.4 0.1 1.3 1.4
0.2 0.15 0.2 0.4 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.25 0.1 0.2 0.4 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.28 0.05 0.43 0.64 0.75 0.86 0.91 0.96 1.02 1.1 1.28

Table 2. List of 2.3 m runs conducted.

waves, ε = 0.133 and δ̂ = 0.785, the initial sideband amplitudes were thereby studied,
and at the same time the evolution of this breaking system could be observed over
the widest possible range. The second series, see table 2, utilized 2.3 m waves over

a wide range of conditions: ε = 0.12–0.28; δ̂ = 0.1–1.5; various b±/a0. These latter
experiments allowed an overview of evolution and breaking over the entire map of

evolution variables, δ̂ versus ε.

4.2.1. The appearance and regimes of breaking

In all of the experiments reported here, breaking and its location were observed
visually. In certain experiments, breakers for waves of length 1.4 m were photographed
(still, standard and high-speed video) breaking in wave groups in the test section of
the tank. Deforming and breaking wave shapes were also measured with an array of
16 wave wires. Under breaking conditions, each wave passing through the peak of
a wave group invariably broke; however the appearance of the breakers varies, and
seems determined both by the phase of the individual wave relative to the wave group
peak (as observed in longtank simulations) and by turbulent scars left in the water
by previous breakers. The waves do not generally break in a strictly two-dimensional
pattern across the tank, cyclical patterns being observed in which alternate breaking
occurs at the sides and then at the tank centre, the latter resembling three-dimensional
breakers observed in the open ocean, Jessup et al. (1997). All of the breakers with
wavelengths from 1 to 4 m broke with the formation of a jet at the crest, and more
than half of these were energetic, with noticeable jet splash on a decidedly concave
front face.

In figure 10, three separate waves are caught breaking by a 35 mm camera, see
the caption; these photographs can be related to figure 11 and the discussion below.
High-speed camera views of a plunging jet are shown in figure 12.

In breaking at the group peaks, the waves first deform, the front face steepening
and becoming increasingly concave and eventually vertical near the crest, which
continually sharpens, with the eventual formation of small transverse scallop-like
instabilities, the steepening-crest phase, figure 11(a). This is followed by the plunging-
jet phase, wherein a small jet forms at the crest, figure 11(b), grows, figure 11(c),
and plunges downward until it touches the concave front surface of the wave, figure
11(d), at a point generally lower than the crest by not more than 0.40 of the total
wave height, depending on the breaker strength. This begins the splashing-ploughing
phase, figure 11(e), in which the plunging jet, with a severity depending on its strength,
enters the water moving forward and downward due to a strong ploughing action,
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Figure 10. Three examples (read each from top to bottom) of 2.3 m waves, initial steepness = 0.165,
breaking in wave groups. Each sequence begins with a jet appearing at the crest (top) and ends with a
surface scar (bottom), see figure 11. In the sequence on the right, wind is blowing C/U(wind) = 0.32.
Water is lit from below, and a vertical board is in the background. Photographed with a 35 mm
camera in auto-sequence.

figure 11( f ). The now submerged jet in this way creates a new front ahead of it,
followed by a strongly turbulent region between this new front and the old wave
crest, figure 11(g). With the subsiding of the active splashing jet and its turbulent
underwater structures, a weaker turbulent decaying scar phase ensues in the water,
figure 11(h), in which the scar moves more and more slowly and less energetically
relative to the wave, resulting finally in quietening of the surface and the formation
in the ocean of a thin foam layer until another breaking cycle occurs in the vicinity.
The appearance of the breaking process is similar for the wavelengths 1–4 m, but
as the wavelength increases in this range the visibility of the splashing and foaming
process also increases. Some of the waves are noticeably weak, with flatter front faces
and weaker jets, which appear to the naked eye as spilling breakers near the wave
crest. Incidentally, wind waves with lengths of 60 cm and less have also been observed
in the OEL tank. The waves crest and deform, but the jet and subsequent splash
are effectively suppressed due to surface tension, presumably, causing the formation
of microbreakers, as observed by Melville (1982) for his mechanical waves of 40 cm
wavelength.
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(a)
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Figure 11. Schematics of breaking waves at the group peak, depicting various phases: steepen-
ing-crest phase (a); plunging-jet phase, (b), (c), (d); splashing-ploughing phase, (e), (f), (g); and
decaying scar phase, (h).

4.2.2. The evolution of 1.2 m breaking waves

The emphasis here is on the evolution of the three original waves, and these are
shown in figure 13. For cases other than b±/a0 = 0.03, the fetches were shifted in
the plotting in order to bring the evolution curves into congruence. A single shifting
algorithm sufficed: (kx)shift ≡ ln{(b±/a0)/0.03}/β, where β is the initial growth rate.
The horizontal bar indicates the location of breaking. General characteristics such as
exponential growth, asymmetry of the upper and lower sidebands near the maximum
modulation, and permanent downshifting after breaking, are seen not to be altered by
the initial sideband amplitude b±/a0. This result is very reassuring for interpretation
of experiments. A moderate scatter of the data points is seen near the breaking region,
as might be expected.

The steepness of these waves, ε = 0.133, is close to values typical of the ocean,
and the breaking is reasonably vigorous. They therefore serve well as a prototype
breaking system and demonstrate most of the characteristics seen first by Melville for
shorter and steeper waves, notably the effect of breaking to increase the asymmetry,
(b− − b+), and to render it irreversible. We discuss this in greater detail later (§ 5) and
meantime pay attention to the end state of the evolution as it was measured. The
energy originally residing largely in the carrier wave is now divided roughly between
two waves, the original carrier and the lower sideband. The future evolution of this
two-wave system, which it was impossible to measure here for lack of fetch, can be
expected to be different from that of the Benjamin–Feir three-wave systems studied
here.
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t =1.012 s

t =1.100 s

t =1.168 s

t =1.056 s

t =1.132 s

t =1.200 s

Figure 12. High-speed camera images of a plunging jet during wave breaking. The vertical line is
a fixed string at the centre of the tank. λ = 2.3 m, T = 1.2 s, ak = 0.165.

4.2.3. The evolution of 2.3 m waves

Among all 2.3 m cases, table 2, certain conditions are selected for discussion in
figure 14 showing the evolution of wave modes with fetch. The cross-hatched part
indicates the region in fetch where a series of breakers was observed, and the solid line
is a curve-fitted exponential growth. The symbols represent the normalized amplitude
of the carrier, the lower and the upper sideband modes.
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Figure 13. Breaking prototype: 1.2 m, 1.14 Hz, 1.029 Hz, 1.267 Hz, ε = 0.133, δ̂ = 0.785, and
b+/a0 3 % to 50 %. Symbols are: ©, lower sideband; �, upper sideband; 4, carrier sideband.

Figure 14(a) displays the evolution of 2.3 m, ε = 0.165 waves with δ̂ = 0.6, 0.8 and
1.0. The initial sideband amplitudes b±/a0 were set at a constant value of 0.1 for all
cases. The onset of breaking indicated by a vertical line is closest to the wavemaker

around δ̂ ∼ 0.8. This may indicate a maximum growth of the sideband. For all cases,
at near peak modulation, the lower sideband amplitude exceeds the upper sideband
amplitude. However, the amplitudes of the upper and the lower sidebands start to
deviate earlier than the onset of the breaking. This differs with Melville (1982) where
the breaking was seen prior to the onset of the asymmetric development of the
sidebands. The asymmetric development of sidebands was also seen earlier for the
recurrence case without breaking, § 4.1.

In figure 14(c), the evolution of 2.3 m, ε = 0.28 wave with δ̂ = 0.43, 0.64, 0.86
and 1.1 are presented. The initial sideband amplitudes b±/a0 were set at a constant
value of 0.05 for all cases. Contrary to the ε = 0.165 case, the onset of breaking is
earlier here than the onset of asymmetric development of the sidebands. The case

δ̂ = 1.1 (lower right figure) had only a single weak breaker, but still experienced an
asymmetric growth of the sidebands.

From these observations, we may conclude that the asymmetric growth of the
sidebands does not absolutely require the appearance of breaking. We show later
that it can be initiated by spreading of discretized energy to higher frequencies, as
well as by breaking. Previous studies have also shown that asymmetry can appear in
the absence of dissipation (Lo & Mei 1985; Dommermuth & Yue 1987; Trulsen &
Dysthe 1990; Hara & Mei 1991).

For both ε = 0.165, b±/a0 = 0.1 and ε = 0.28, b±/a0 = 0.05, in figure 14, the
waves continued breaking until reaching the end of the tank. In order to study the
evolution beyond the point where breaking ceased, we have conducted an experiment

with higher initial sideband amplitudes, figure 14(b); 2.3 m, ε = 0.165, δ̂ = 0.2–1.4,
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Figure 14. Evolution of wave modes for 2.3 m wave: (a) ε = 0.165, for δ̂ = 0.6, 0.8 and 1.0,

b±/a0 = 0.1; (b) ε = 0.165, δ̂ = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4, b±/a0 = 0.3; (c) ε = 0.28, δ̂ = 0.43,
0.64, 0.86 and 1.1, b±/a0 = 0.05. Shaded part indicates where the waves broke. Symbols are: 4,
carrier; ©, lower; �, upper.
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Figure 15. (a) Ratio of the maximum amplitude Hm/2 of waves to the initial amplitude a0, as a
function of ε. (b) The maximum wave steepness Hmk/2 versus the initial steepness ε. Vertical lines
show the current study, while the curves are from Su & Green (1985).

b±/a0 = 0.30. The breaking ceases for δ̂ = 0.4, 0.6, 0.8, 1.0 and 1.2, and except in the
last case, a permanent downshifting occurs. Compare this result with the evolution
presented earlier in figure 13, where the carrier wave eventually recovers its amplitude,
and there seems to be an exchange of energy between the lower and the carrier wave
mode whereas the upper sideband wave remains small in amplitude. In figure 14(b),
we see only a slight indication that the carrier wave has started to regain its energy.

Note that for δ̂ = 1.2, downshifting was not completed despite breaking, showing the
dependence of the final state on the strength of breaking.

4.2.4. High-frequency spreading

The spreading of energy at higher frequencies is noticeable during evolution and

occurs both with (figure 20: δ̂ = 0.785) and without (figure 9: δ̂ = 0.894) breaking.
The spread energy is decidedly discretized and there is little evidence of the presence
of a continuous spectrum underlying it. In the case of 2.3 m waves with very small

sideband spacing, δ̂ = 0.2 (figure 22), both discretized and continuous energy are
evident, the latter growing with fetch and especially prominent just to the high-
frequency side of the peak. The spectral resolution in the latter case is just sufficient
to see the discrete peaks, and the appearance of what looks like a continuous spectral
component is considered to be real.

4.2.5. Characteristics of breaking on 2.3 m waves

Following Su & Green (1985), the measured steepness Hmk/2 where Hm is the total
wave height at breaking, is shown for various initial wave steepnesses ε. The ratio of
Hm/2a0, is plotted as well (figure 15); note that Hm/2 is not the wave amplitude at
breaking as the crest height there significantly exceeds the trough amplitudes. There
are slight differences at the lower steepness, but the general tendencies at the higher
steepnesses are similar to each other. Note that in Su & Green’s experiments, δω is
not fixed or varied, but is determined naturally. On the other hand, our results contain
a larger range of modulational frequencies, and there is, therefore, a wider scatter of
Hm/2a0 and Hmk/2. In addition, even for the same initial steepness and modulational
frequency, each breaking wave has a different Hmk/2, introducing natural scatter, in
part due to the effect of disturbances left in the water by previous breakers.
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Figure 16. The (ε, δω/ω) diagram, indicating the theoretical prediction of the locus of the
maximum growth.

4.2.6. The regime of breaking; the minimum steepness for breaking

The fastest growing instability occupies a corridor in ε, δ̂. Theoretical predictions are
shown in figure 16 of the most unstable modulational frequency, δω/ω, as a function
of initial wave steepness ε, according to Benjamin & Feir (1967), Dysthe (1979),
Longuet-Higgins (1980) and our own calculations, previously unreported, based on
the kinetic equations of Krasitskii (1994). For each steepness ε = 0.13, 0.165, 0.2, 0.25
and 0.28 seeded experiments were conducted with modulational frequencies in the

range from 0.1 6 δ̂ 6 1.5. The thick vertical lines in figure 17 indicate the range of
modulational frequencies where the location of breaking inception in the tank was
closest to the wavemaker. This roughly coincides with the almost identical theoretical
predictions of Longuet-Higgins (1980) and Krasitskii (1994), tending to confirm them.
Note that Dysthe’s (1979) theoretical prediction of the most unstable frequencies are
in agreement with these only for steepness ε < 0.10.

Breaking occurs only in a bounded portion of ε, δ̂, and it is interesting to know the
boundaries, particularly for small steepness. Su & Green (1985) showed experimental
curves extending to steepness, ε, a little smaller than 0.11. In longtank, which was
not extended much beyond the first peak in the modulational cycle, breaking was
not found for ε < 0.13. Figure 17 shows the experimental boundaries for breaking
as determined in these experiments; steepness smaller than ε = 0.12 could not be
investigated because of tank length limitations. It can be seen, however, that the
extrapolated boundary intersects the most unstable corridor for steepness slightly
larger than 0.10. We have supplemented our experimental observation with numerical
(fully nonlinear) breaking results, Landrini et al. (1998). Although more calculations
would be useful, a minimum steepness ε for breaking just below 0.1 seems indicated.
It should be noted that the steepness, ε, corresponds to the average energy within
the energetic wave train and not that of the wave at the modulation peak, which is
substantially larger, as indicated in figure 15.
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Figure 17. The (ε, δω/ω) diagram, displaying the region where breaking events were observed.
Circles are from fully nonlinear computations of Landrini et al. (1998). Thick grey line indicates an
approximate breaking–non-breaking boundary as determined from the experiment.

Since energetic wave steepnesses in the ocean are in the vicinity ε ∼ 0.10, an

important region of modulational frequencies, δ̂, for the ocean consistent with figure

17 is 0.05 < δ̂ < 0.10.

5. Discussion
5.1. Downshifting during recurrence

Theoretical evidence of perfect recurrence found through NLS simulations has been
supported by three-wave calculations by Stiassnie & Shemer (1987) using Zakharov
equations. In their case, a common characteristic of the predicted dynamical behaviour
during strong growth of the sidebands is that the difference in energy between them
is notable; they predicted that at peak modulation the upper sideband amplitude
becomes greater than that of the lower; however the NLS simulations predict that
initially identical sideband amplitudes remain identical throughout the motion.

The experimental evidence contradicts this prediction. In Lake et al., a growth
of the lower sideband relative to the upper was found during their mutual growth,
both with and without breaking, and we have found the same here. The spectral
asymmetry created in this way has been predicted by computations made by the
Dysthe modification of the NLS idealization (Lo & Mei 1985; Trulsen & Dysthe
1990; Hara & Mei 1991), which results in an improvement at finite bandwidths; the
same prediction was also made by Dommermuth & Yue (1987) using exact numerical
calculations by a spectral method.

Experiments show that a further consequence of three-wave modulation, breaking
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Figure 18. Evolution of the wave modes for cases with and without breaking events: (a) the carrier,
(b) the lower and (c) the upper sideband waves are presented. The solid line is the evolution of the
case with breaking, and the broken line is the evolution of the non-breaking case. Breaking case is

ε = 0.133, δ̂ = 0.785: non-breaking case is ε = 0.1, δ̂ = 0.894.

or not, is the appearance of discretized energy in the spectrum at frequencies higher
than ω+ + δω. As we discuss below, the asymmetry, (b− − b+) > 0, would seem an
inevitable consequence of the existence of this high-frequency energy.

In the absence of breaking, can perfect recurrence ultimately occur in the face of
this discretized high-frequency energy and the resulting sideband asymmetry? It seems
unlikely, and fully nonlinear calculations of Landrini et al. (1998) show deviations
from perfect recurrence from cycle to cycle, and particularly in the breaking cycle.
In the experiment here, however, the tendency toward reversal of the lower–upper
imbalance and toward recurrence is found to be quite strong for a wave train
sufficiently weak that breaking is absent. The emphasis here is on ‘tendency’. From
the point of view of conservative system theory, further attention should be devoted
to the discretized high-frequency energy, its causes and consequences.

5.2. Downshifting during breaking

In previous sections, we have shown the evolution of the modulational wave train
with a variety of parameter ranges. One showed recurrence, others showed permanent
downshifting of the spectral peak. Figure 18 summarizes the evolution of wave modes
for cases with and without a breaking event, which were presented earlier in figure
13 and figure 9; from left to right, the carrier, the lower, and the upper sideband
evolutions are presented. The solid line is a smoothed curve of the evolution of the

breaking case (ε = 0.133, δω/ω = 0.104, and δ̂ = 0.785), and the broken line is
a smoothed curve of the evolution without breaking (ε = 0.1, δω/ω = 0.089, and

δ̂ = 0.89). A horizontal bar in each diagram represents the approximate location of
the breaking event for the breaking case. Due mainly to differences in steepness, the
time scale associated with evolution is different for each case. Therefore, in order to
illustrate the difference in the evolution in a single diagram, the horizontal coordinate
of the non-breaking case was artificially adjusted; it was offset by 25 wavelengths,
and was shrunk by a factor of 0.83.

A notable difference between the two cases is that the lower sideband remains
high in amplitude when and after breaking, whereas when no breaking is present it
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Figure 19. The evolution of the energy difference of the lower and the upper sideband modes. The
solid line is the breaking case, and the broken line is the recurrence case.

subsides after peaking. On the other hand, the upper sideband seems to return to its
original state in both cases. Therefore, the energy difference of the lower sideband
and the upper sideband remains large when breaking is present but returns to zero
when no breaking is present. This is illustrated in figure 19, where the difference of
the square of the amplitudes of the lower and the upper sideband is plotted against
non-dimensional fetch. It is clear that the effect of breaking dissipation is to increase
and render irreversible the energy difference of the upper and the lower sideband
after peak modulation. The spectral evolution of the breaking case is shown for
10 wave length separations in figure 20. The spectral downshifting is clearly seen,
in the linear spectral energy plot, figure 20(a). Below we will present a physical
interpretation of such spectral behaviour based on global considerations including
energy and momentum losses in the wave system, already introduced in § 2.

5.3. Downshifting theory

Here we present an analysis of energy shifting in a system of discrete waves, extend-
ing the results of Tulin (1996). Our purpose is simple: to predict based on global
considerations of wave energy and momentum, the consequences for energy shifting
of (i) both energy dissipation, Db, and momentum loss, Ṁb, due to breaking, and (ii)
the transfer of energy in the discretized spectrum.

Consider a system of planar waves in which the free wave energy is initially
distributed in three waves: primarily in a carrier wave, ω0, and to a lesser extent in
two sidebands, ω0 ± δω. The initial energy in this three-wave system is

E3 = E0 + E−1 + E+1 +
∑
j

Ej , (5.1)

where E0, E−1, E+1 are the energies in the first harmonics of each of the three
waves and

∑
j Ej represents the energy arising from the interactions between three

fundamentals, comprising the energy in the bound harmonics which arise from self-
interactions, and the energy in the sum and difference harmonics which arise from
inter-wave interactions.
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Figure 20. Spectral evolution of breaking wave case: wavelength 1.2 m, frequencies 1.14 Hz,

1.029 Hz, 1.267 Hz, ε = 0.133, and δ̂ = 0.785. Spectrum is plotted for every 10 wavelengths, sampled
from the data presented earlier in figure 13 as the breaking prototype.

In a similar way, the initial momenta in the three wave system are

M3 = M0 +M−1 +M+1 +
∑
j

Mj. (5.2)

The initial distribution of energy and momenta, (5.1) and (5.2), is altered by the
transfer of energy to free waves ω0 ± nδω, first most noticeably to n = +2, then
n = −2,+3, etc. These relatively fast transfers seems to be a consequence of detuned
resonances of which the first is

(ω0)∓ (ω0 − δω)± (ω0 + δω) = ω0 ± 2δω,

(k0)∓ (k0 − δk)± (k0 + δk) = k0 ± 2δk + ∆k,

}
(5.3)

in which ∆k is a small detuning factor, where ∆k/k is O(2(δω/ω)2), allowing effec-
tive energy exchange over a distance comparable to (2(δω/ω)2)−1λ, where λ is the
wavelength.

In the experiments, see figure 9(b), the early growth of ω0 + 2δω can be seen even
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at 3.6 m fetch and followed until it returns its energy in recurrence after 30.6 m or
after about 30 wavelengths. The subsequent growth of ω0 + 3δω and even higher
free waves can also be seen. The growth of ω0 − 2δω appears at 9.0 m, continuing
until it too begins to recede after 30.6 m. For reasons not yet understood, the growth
of high-frequency free waves through resonant interaction outstrips the growth of
low-frequency free waves and especially beyond ω0 − 2δω.

The growth of these new free waves must occur at the expense of the three-wave
system, E3. If, at the same time we presume that breaking is taking place, then

Ė3 = −Db −
∑

n=±2,±3, ...

Ėn, (5.4)

and, likewise,

Ṁ3 = −Ṁb −
∑

n=±2,±3, ...

Ṁn. (5.5)

The momentum in each wave component, both free and bound, can be shown to
be given to second order in wave steepness (ε) by

M = E/c = E/(ω/k), (5.6)

and then, utilizing δk/k = 2δω/ω, and neglecting terms of O(δω/ω)2, the three-wave
momentum, M3, becomes

c0M3 = E0 + E−1(1− δω/ω) + E+1(1 + δω/ω) +
∑
j

(c0/cj)Ej, (5.7)

and subtracting the above from the three-wave energy, E3, (5.1):

E3 − c0M3 = (δω/ω)(E−1 − E+1) +
∑
j

Ej(1− c0/cj). (5.8)

Taking the time derivative of (5.8) and subtracting (5.4) and (5.5), finally the time
variation of the difference between the lower and upper sideband energies is obtained
with the dependence originally sought:

∂

∂t
(E−1 − E+1) = −(Db − c0Ṁb)/(δω/ω)︸ ︷︷ ︸

(i) breaking

+
∑

n=±2,···
Ėn

(
ωn − ω0

ω0

)/
(δω/ω)︸ ︷︷ ︸

(ii) energy transfer to free waves

+
∑
j

Ėj

(
c0 − cj
cj

)/
(δω/ω)︸ ︷︷ ︸

(iii) energy in bound waves

. (5.9)

The sum interaction in terms included in (iii) can be seen in experiments arrayed
in clusters centred on each harmonic. The growth of these at the second harmonic
becomes apparent at 14.4 m fetch, figure 9(b), corresponding to growth of the
sidebands resulting in stronger inter-wave interactions among the three dominant
waves. With growth in other free waves, particularly for frequencies on the high side,
the interaction terms grow to the right of the second harmonic. The celerity, cj , of
the interaction waves is c0 for all harmonics, and somewhat greater or lesser for sum
inter-wave interactions, depending on the case. The symmetry of the cluster about the
second harmonic tends to minimize the entire contribution, which is already certainly
lower than (ii) because of the low levels of interaction energy; the effect of sum
interactions can therefore be safely ignored. The energy in difference frequencies is
also seen to be small and can be ignored, too, on that account.
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Figure 21. Schematic of breaking wave and jet, with quantification of energy
and momentum losses.

Over the duration of our experiments, the important new free waves correspond
to −2, +2, +3, and even +4 at the maximum downshift, between fetches 19.8 m
and 25.2 m, figure 9(a); the low-frequency energy in −2 generally lagged behind the
upper high-frequency waves except at the end of the cycle, after recurrence. These
facts combine in (ii) to create a positive downshifting contribution from (ii) during
the first half of the evolution, explaining the positive sign of (E−1 −E+1) at midfetch,
and its variation throughout, see figure 19, eventually toward recurrence.

The term (ii) in the present theory also explains the necessity to include more than
three free waves in a prediction of wave evolution if details such as the variation
(E−1 − E+1) are to be predicted.

The experiments show that when breaking ensues during evolution, then (E−1−E+1)
grows more rapidly and maintains its positive value at the end of the cycle, figure
19. This can be explained through (i) in (5.9), provided that this term is positive in
nature.

During breaking of energetic waves, a jet forms which conveys water with both
kinetic and potential energy out of the wave, as well as momentum. This is depicted
in figure 21, taken from Tulin (1996), where these losses are quantified and term (i) is
parameterized in terms of the breaking dissipation and found to be positive:

∂

∂t
(E−1 − E+1) = γDb/(δω/ω)︸ ︷︷ ︸

(i)

+
∑
n=±2,...

Ėn

(
ωn − ω0

ω0

)/
(δω/ω0)︸ ︷︷ ︸

(ii)

, (5.10)

where (iii) has been neglected.
The present experiments, summarized in figures 18–20, substantially confirm (5.10).

The influence of (ii) which is dependent on ±2, is negligible since the energy in these
waves is small at the end of the breaking cycle. An experimental estimate of γ = 0.4,
in agreement with the theoretical estimate for a strong breaker, figure 21, follows from
the data, figures 18 and 19: δω/ω = 0.10; dissipation loss in E3 over the breaking
event, 0.11E0; a concurrent change in E−1 − E+1 of 0.45E0.

The result (5.10) can, in principle, be applied to each cycle of the breaking process,
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replacing the set −1, 0,+1 by −2,−1, 0, leading eventually to another downshifting,
(E−2 − E0) > 0, provided that breaking takes place. The continuation of the process
requires the generation of successive lower sidebands −2,−3, etc., but this seems
guaranteed by successive near-neighbour detuned resonances, exemplified by (5.3).

The global result, (5.10), leads immediately to a variety of questions: what is the
precise mechanism through which breaking brings about the sideband differences
leading to downshifting?; what is the effect of wind, which provides both energy and
momentum to the waves?; how can (5.10) be translated to a predictive evolution
theory in both space and time? The first of these three questions dependent as it
is on the breaking process, remains unanswered. The second is answered in Tulin
(1996), where it was shown that the wind pumping, ėw , is essentially equal to cfw ,
where fw is the wind thrust on the wave, so that the wind does not contribute
noticeably to downshifting, which depends on the difference between these quantities.
In the same reference, a set of heuristic coupled equations was derived for the
simultaneous evolution of a narrow banded system in the presence of wind pumping
and breaking, one for the peak energy density, and the other, a downshifting equation,
for the corresponding group velocity. These equations, or something like them, can
be formally derived, but their detailed discussion is beyond the scope of the present
work.

Finally, a serious challenge is imposed by these results to any predictive method
of ocean wave evolution in which downshifting depends solely on slow, high-order,
resonant wave interactions. Just as in the simple case of three-wave evolution treated
here, the effect of the imbalance between energy and momentum losses, hand in
hand with near-neighbour detuned resonances, both occurring in the order of 50
wavelengths, might very well dominate the downshifting of energetic waves in the
ocean, too.

5.4. Discretized high-frequency spectra

Melville, who utilized wave steepnesses in the range 0.2–0.3, has given an interpretation
of the generation of discretized higher frequencies in terms of the instability of
steep waves as quantified by Longuet-Higgins (1978). We found in our experiment
noticeable discretized high-frequency energy for steepnesses well below ε = 0.2. We
draw attention to the log-linear spectra for our prototype breaking wave with an initial
steepness 0.133, in figure 20. Even taking into account the increase in the steepness
of this wave when breaking is initiated, it would seem to be under 0.3 and less steep
than required for the instability described by Longuet-Higgins (1978). Furthermore,
the spread of discretized high-frequency energy was very vigorous during the strong
modulation of the weak three-wave system, ε = 0.1, where a tendency to recurrence
was observed and where no breaking occurred, see figure 9. These facts, plus the way
in which the energy spreads, makes it highly likely that high-frequency discretized
energy spreading has its origin elsewhere than in steep wave instability.

As described in some detail in § 5.3, the spread of discretized energy around the
initial three-wave system, which occurs over about 30 wavelengths, seems a likely
consequence of the near-neighbour detuned resonance described by (5.3); at the same
time, the spread of discretized energy around the harmonics of the three-wave system
seems first of all due to self- and wave-wave interactions associated with the three
free waves. However, it should not be overlooked that energy may also be spread in
the harmonic clusters into neighbouring bound waves, through the detuned resonance
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Figure 22. Spectral evolution of wavelength 2.3 m, 0.825 Hz, ε = 0.165, δ̂ = 0.2, and b±/a0 = 0.3.
Frequency resolution of the spectrum, 0.012 Hz, is marginal but still sufficient to resolve the sideband
and the carrier wave separation of 0.027 Hz in the linear-linear plot (b).

involving three generating bound waves, of which the first example is

(2ω0)∓ (2ω0 − δω)± (2ω0 + δω) = 2ω0 ± 2δω,

(2k0)∓ (2k0 − δk)± (2k0 + δk) = 2k0 ± 2δk + ∆k,

}
(5.11)

where again ∆k/k is O(2(δω/ω)2) and these interactions too are observed in experi-
ments to occur within 30 wavelengths. This detuned resonance of bound waves may
be compared with the free wave case, (5.3).

5.5. Continuous spectra

The spectra appearing after breaking in Melville are characterized by the appearance
of a substantial continuous spectrum underlying the discrete; see Melville (1982)
figure 7 for ε = 0.233, and figure 9 for ε = 0.292. In our experiments we do not see
significant signs of a continuous spectrum for evolution at normal sideband spacings
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and for ε = 0.1 (figure 9) and for ε = 0.133 (figure 20). We did find substantial
continuous spectra on the high side of the spectral peak at a very small sideband

spacing, δ̂ = 0.2 (figure 22). These contrasting results suggest that both wave steepness
and sideband spacing are important factors with regard to mechanisms whereby
continuous spectra are created and become observable. In addition, the separation of
discrete and continuous spectra depends on the frequency resolution realized in the
data processing, which is itself the inverse of data length.

Randomized fluctuations in wave frequency imposed on discrete waves would if
sufficiently large lead to the appearance of a continuous spectrum; a sufficiently large
fluctuation intensity would be of the order δω. Breaking waves leave behind them
patches or scars of turbulence and enhanced surface drift in the down-tank direction.
These would lead, at least, to fluctuations (increases) in the apparent wave frequency
due to Doppler effects. These fluctuations would, of course, be larger for steeper
waves; here it is important to remember that the breaking dissipation grows non-
linearly with wave steepness. The effect of given fluctuations would also be greater for

smaller δ̂. These remarks, taken together with the previous experimental observations,
suggests the necessity for further observation including wind effects if possible, and
for quantification of the effects involved.

5.6. Wave crest change

Wavenumber downshifting implies by definition a reduction of wave crest density,
(N/∆x), where N = (∆x)(k/2π) is the number of wave crests in an interval ∆x. It
then follows that the rate of change in wave crest density is identically equal to the
frequency down-shifting rate following a group. The wave conservation law is

∂k/∂t+ ∂(ck)/∂x = 2π(Ṅ/∆x), (5.12)

where (ck) is the flux of wave crests. This leads to the desired relation

∂ω/∂t+ cg∂ω/∂x = (dω/dt)cg = 2πcg(Ṅ/∆x). (5.13)

The latter is a kinematical identity and does not imply in any way that crest
number change is the causative effect leading to frequency downshifting. Rather, they
are alternative measures of the same physical fact.

The process according to which changes in wave crests occur has been discussed
by early investigators, Lake & Yuen (1978), Ramamonjiarisoa & Mollo-Christensen
(1979), and Hatori & Toba (1983); the latter two observed ‘crest pairing’ in wind
waves. A related phenomenon is phase reversal in the wave record, which was observed
by Melville (1983) always to occur in the neighbourhood of local minima in wave
amplitude with breaking present. Detailed studies of these phase jumps by Huang
and his colleagues are reviewed by Huang, Long & Shen (1996), who observed in
ocean records anomalous phase jumps of 2π magnitude occuring at energy minima,
utilizing Hilbert transform processing.

Their accounts of crest loss are consistent with our own raw wave wire records,
except that we have also observed crest gain accompanying local upshifting, both
with and without wave breaking, but closely correlated with spectral frequency shifts.

The physical length of a wave group is (2π/δk), and is in our experiments therefore
constant in fetch, and a change of ±1 in the number of waves in a group corresponds
to a change of δk in wavenumber. This relation is observed in the present experiment,
see figure 9, where a temporary shift in peak energy about δω (i.e. δk in wavenumber)
is observed at 25.2 m, while a concurrent reduction (temporary) in the number of
waves from 11 to 10 is also seen. The necessity for the full δω shift is illustrated in
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figure 20. It seems to have been temporarily reached at fetch 4, where the number of
waves is reduced from 9 to 8; however, by fetch 6 the frequency shift has regressed
to about δω/2, and the number of waves is back to 9, even though net downshifting
has taken place. In another breaking record, figure 23, the loss of a single wave is
well correlated with a full δω downshifting and simultaneous wave breaking.

In these wave records we can on occasion conclude that a wave is in the process of
being lost (Yuen & Lake’s nomenclature) or of fusing with another wave (Huang’s
nomenclature) near a region of low wave energy. One example, in which breaking is
absent, is in figure 9 at 19.8 m fetch, see the upward arrow; here, the wave train is
in the midst of temporary downshifting without breaking. Another example is shown
in figure 23 at 27 m fetch where downshifting with breaking is in progress. In this
figure, the merging of two neighbouring waves, denoted by � and by © is deduced
to occur somewhere between 27 m and 36 m fetch, resulting in the wave denoted by
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4. It is also between these two fetches that the lower sideband becomes the dominant
spectral peak, completing a shift of δω which began at the first fetch. Based on the
evidence in our own wave records, it seems likely that regions of near disappearing
wave energy are signatures of wave crest change accompanying frequency shifting,
which is itself brought about by complex processes, such as are discussed in § 5.3, and
about which much remains to be discovered.

6. Concluding remarks
Experiments on wave instability and its consequences are demanding in terms

of facility size, wave generators, and experimental technique and analysis. Pertinent
systematic experiments have lagged behind, in quantity, theoretical and numerical
studies; this, despite the difficulties faced by the latter in modelling real effects. In
addition, the experimental results so far obtained are very limited because of the
demand on tank length. Most important, there are no systematic studies which have
been able to study evolution beyond one cycle, whether breaking or not. There are,
as yet, no studies including the effects of wind either.

Here we have been able to consolidate and extend earlier pioneering studies of
the evolution of the BF instability over one cycle, utilizing longer waves and lower
steepnesses. This has resulted in the clarification of important issues such as regimes
of breaking, the tendency toward recurrence, the effect of breaking on downshifting,
high-frequency discretized energy, and the generation of continuous spectra. Clearly,
it would be highly desirable to extend these systematic experiments to beyond the
first cycle of evolution. As we have commented herein, the quantization of the initial
energy in two roughly equal waves at the end of the first cycle suggests a very different
and probably faster evolution to follow in the second and succeeding cycles.

Theory discussed here suggests a simple direct relationship between rate of down-
shifting, and breaking and momentum loss acting together, with near-neighbour
energy transfer, the latter due to detuned resonance acting over a limited time (less
than 50 wave periods). This is a very different point of view than is commonly
incorporated in large-scale wave prediction modelling, and only reinforces the need
for further research in this area.

The scientific motivation for understanding the long term evolution of wave groups
including real effects would seem clear. There is added motivation provided by the
fact that low-grazing-angle radar imaging of wind-driven wave groups (Werle 1995;
Smith, Poulter & McGregor 1996; Lamont-Smith, Fuchs & Tulin 1998), provides
powerful evidence of their actual existence. This lends strong support to previous
contentions as to their importance for ocean processes.

Finally, a variety of wave breaking phenomena which occur in the ocean would
seem best modelled in the laboratory through the use of waves breaking in wave
groups. We now do this regularly in the OEL, using knowledge gained in these
studies. Among these are studies of low-grazing-angle radar scattering from breaking
waves (sea spikes), see Fuchs et al. (1997), floating bridge wave loadings, see Welch et
al. (1996), and ringing loads on elastically mounted cylinders, see Welch et al. (1998).

We express our thanks to Mr Dominic Regas and Mr Jörn Fuchs for their assistance
in preparing and conducting the experiments, and to Y. Yao and M. Landrini for
supplying fully nonlinear computational results. This work was supported by: the
Ocean Technology Program of the Office of Naval Research, Thomas Swean jr,



Observations of wave group evolution 231

program manager and by the Advanced Sensor Applications Program Support, Donna
Kulla, program manager.

REFERENCES

Benjamin, T. B. 1967 Instability of periodic wavetrains in nonlinear dispersive systems. Proc. R.
Soc. Lond. A 299, 59–75.

Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep water. Part 1. Theory.
J. Fluid Mech. 27, 417–430.

Bliven, L. F., Huang, N. E. & Long, S. R. 1986 Experimental study of the influence of wind on
Benjamin–Feir sideband instability. J. Fluid Mech. 162, 237–260.

Bonmarin, P. & Ramamonjiarisoa, A. 1985 Deformation to breaking of deep water gravity waves.
Exps. Fluids 3, 11–16.

Chu, V. H. & Mei, C. C. 1970 On slowly-varying Stokes waves. J. Fluid Mech. 41, 873–887.

Dold, J. W. & Peregrine, D. H. 1986 Water-wave modulation. Coast. Engng 163–175.

Dommermuth, D. & Yue, D. 1987 A high-order spectral method for the study of nonlinear gravity
waves. J. Fluid Mech. 184, 267–288.

Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application
to deep water waves. Proc. R. Soc. Lond. A 369, 105–114.

Fuchs, J., Welch, S., Waseda, T., Regas, D. & Tulin, M. P. 1997 Inside the sea-spike: Low grazing
angle radar imaging of laboratory waves repeatedly breaking in wave groups. IGARSS ’97,
pp. 714–718. IEEE.

Hammack, J. L. & Henderson, D. M. 1993 Resonant interactions among surface water waves. Ann.
Rev. Fluid Mech. 25, 55–97.

Hara, T. & Mei, C. C. 1991 Frequency downshift in a narrowbanded surface waves under the
influence of wind. J. Fluid Mech. 230, 429–477.

Hatori, M. & Toba, Y. 1983 Transition of mechanically generated regular waves to wind waves
under the action of wind. J. Fluid Mech. 130, 397–409.

Huang, N. E., Long, S. R. & Shen, Z. 1996 The mechanism for frequency downshift in nonlinear
wave evolution. Adv. Appl. Mech. 32, 59–117.

Jessup, A. T., Zappa, C. J., Loewen, M. P. & Hesany, V. 1997 Infrared remote sensing of breaking
waves. Nature 385, 52–55.

Krasitskii, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface
waves. J. Fluid Mech. 272, 1–20.

Lake, B. M. & Yuen, H. C. 1977 A note on some nonlinear water-wave experiments and the
comparison of data with theory. J. Fluid Mech. 83, 75–81.

Lake, B. M., Yuen, H. C., Rungaldier, H. & Ferguson, W. E. 1977 Nonlinear deep-water waves:
theory and experiment. Part 2. Evolution of a continuous wave train. J. Fluid Mech. 83, 49–74.

Lake, B. R. & Yuen, H. C. 1978 A new model for nonlinear wind waves. Part 1. Physical model
and experimental evidience. J. Fluid Mech. 88, 33–62.

Lamont-Smith, T., Fuchs, J. & Tulin, M. P. 1998 Laboratory investigation of LGA scattering from
wind-generated waves and wave groups. IGARSS ’98, pp. 1219–1221.

Landrini, M., Oshri, O., Waseda, T. & Tulin, M. P. 1998 Long time evolution of gravity wave
systems. In Proc. 13th Intl Workshop on Water Waves and Floating Bodies (ed. A. J. Hermans),
Alphen aan den Rijn, pp. 75–78.

Lo, E. & Mei, C. C. 1985 A numerical study of water-wave modulation base on a higher-order
nonlinear Schrödinger equation. J. Fluid Mech. 150, 395–416.

Longuet-Higgins, M. S. 1978 The instabilities of gravity waves of finite amplitude in deep water
I. Superharmonics. Proc. R. Soc. Lond. A 360, 471–488.

Longuet-Higgins, M. S. 1980 Modulation of the amplitude of steep wind waves. J. Fluid Mech.
99, 705–713.

Melville, W. K. 1982 The instability and breaking of deep-water waves. J. Fluid Mech. 115,
165–185.

Melville, W. K. 1983 Wave modulation and breakdown. J. Fluid Mech. 128, 489–506.

Oshri, O. 1996 Frequency downshifting in surface waves and free surface flows without waves,
PhD thesis, University of California, Santa Barbara.



232 M. P. Tulin and T. Waseda

Phillips, O. M. 1967 Theoretical and experimental studies of gravity wave interactions. Proc. R.
Soc. Lond. A 299, 104–119.

Ramamonjiarisoa, A. & Mollo-Christensen, E. 1979 Modulation characteristics of sea surface
waves. J. Geophys. Res. 84, 7769–7775.

Smith, M. J., Poulter, E. M. & McGregor, J. A. 1996 Doppler radar measurements of wave
groups and breaking waves. J. Geophys. Res. 101, 14269–14282.

Stiassnie, M. 1984 Note on the modified nonlinear Schrödinger equation for deep water waves.
Wave motion 6, 431–433.

Stiassnie, M. & Shemer, L. 1987 Energy computations for evolution of class I and II instabilities
of Stokes waves. J. Fluid Mech. 174, 299–312.

Su, M.-Y. 1982 Three-dimensional deep-water waves. Part 1. Experimental measurement of skew
and symmetric wave patterns. J. Fluid Mech. 124, 73–108.

Su, M.-Y., Bergin, M., Marler, P. & Myrick, R. 1982 Experiments on nonlinear instabilities and
evolution of steep gravity-wave trains. J. Fluid Mech. 124, 45–72.

Su, M.-Y. & Green, A. W. 1985 Wave breaking and nonlinear instability coupling. In The Ocean
Surface (ed. Y. Toba & H. Mitsuyasu), pp. 31–38. D. Reidel.

Trulsen, K. 1989 Frequency down-shift through self modulation and breaking, a numerical study.
Master’s thesis, University of Tromso.

Trulsen, K. & Dysthe, K. 1990 Frequency down-shift through self modulation and breaking. In
Water Wave Kinematics (ed. A. Torum & T. Gudmestad), pp. 561–572. Kluwer.

Tulin, M. P. 1996 Breaking of ocean waves and downshifting. In Waves and Nonlinear Processes in
Hydrodynamics (ed. J. Grue, B. Gjevik & J. E. Weber), pp. 117–196. Kluwer.

Tulin, M. P., Yao, Y. & Wang, P. 1994 The simulation of the deformation and breaking of ocean
waves in wave groups. BOSS’94, Boston-Ma, pp. 383–392.

Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 79–97.

Waseda, T. 1997 Laboratory study of wind- and mechanically-generated water waves, PhD thesis,
University of California, Santa Barbara.

Welch, S. M., Levi, C., Fontaine, E. & Tulin, M. P. 1998 Experimental loads on a flexibly
mounted vertical cylinder in breaking wave groups. Proc. Eighth (1998) Intl Offshore and
Polar Engineering Conf. Vol. 1, pp. 178–183. International Society of Offshore and Polar
Engineers.

Welch, S., Yao, Y., Tulin, M. P. & Jagannathan, S. 1996 An experimental and numerical
investigation of wave loads on floating bridges, including nonlinear and wind effects. Proc.
Sixth (1996) Intl Offshore and Polar Engineering Conf. Vol. III, pp. 228–236. International
Society of Offshore and Polar Engineers.

Werle, B. 1995 Sea backscatter, spikes and wave group observations at low grazing angles. IEEE
Intl Radar Conf, pp. 187–195.

Yao, Y. 1992 Theoretical and experimental studies of wavemaking by a large oscillating body in long
tanks, including nonlinear phenomena near resonance, PhD thesis, University of California,
Santa Barbara.

Yao, Y., Tulin, M. P. & Kolaini, A. R. 1994 Theoretical and experimental studies of three-
dimensional wavemaking in narrow tanks, including nonlinear phenomena near resonance. J.
Fluid Mech. 276, 211–232.

Yuen, H. C. & Lake, B. M. 1980 Instabilities of waves on deep water. Ann. Rev. Fluid Mech. 12,
303–334.

Yuen, H. C. & Lake, B. M. 1982 Nonlinear dynamics of deep-water gravity waves. Adv. Appl. Mech.
22, 67–229.

Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of deep fluid.
J. Appl. Mech. Tech. Phys. 2, 190–194.


